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INTRODUCTION

ABSTRACT

Background: This study aims to identify biomarkers associated with radiation-induced
coronary heart disease (RICHD) in breast cancer patients by integrating bioinformatics
approaches with single-cell sequencing data, providing potential therapeutic targets
for RICHD treatment. Materials and Methods: Gene expression profiles associated
with coronary heart disease were sourced from the Gene Expression Omnibus (GEO)
database, and GEO2R was utilized to identify differentially expressed genes.
Whole-genome sequencing and clinical data of breast cancer patients were obtained
from The Cancer Genome Atlas (TCGA) database. Gene expression levels were
analyzed using the 'Limma' package to compare radiation-exposed and non-exposed
groups. Biological functional enrichment analysis was conducted using Gene Ontology
(GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The intersection of
TCGA and GEO identified key genes. Further analyses of these key genes in breast
cancer patients were conducted using the GEPIA, Kaplan-Meier Plotter websites, and
single-cell sequencing results. Results: The intersection of datasets from breast cancer
and coronary heart disease revealed Hemoglobin A2(HBA2) as a key gene associated
with RICHD. HBA2 exhibited statistically significant differences in mRNA expression
levels between breast cancer and normal tissues (P<0.05). Kaplan-Meier Plotter
analysis revealed a significant prognostic difference between breast cancer patients
with varying HBA2 expression levels (P=0.005). HBA2 exhibited significant expression
levels in CD8+ T cells. Conclusion: HBA2 could be a biomarker and therapeutic target
for RICHD, offering new perspectives for clinical management of RICHD patients.

and image-guided radiotherapy (IGRT), have shown
potential in effectively reducing cardiac radiation

Radiotherapy (RT) is a widely used and effective
treatment modality in breast cancer management,
primarily aimed at reducing local recurrence and
improving overall survival rates. Radiation therapy
(RT) can increase the risk of cardiac complications,
such as heart failure, coronary artery disease, and
myocardial infarction, especially in patients with
left-sided breast cancer (1-3). Coronary artery disease,
a form of cardiovascular disease, ranks as the second
leading cause of death among breast cancer patients
treated with radiotherapy. The pathogenesis of
radiation-induced coronary heart disease (RICHD) is
complex, involving multiple factors such as
inflammation, fibrosis, vascular injury, and
endothelial dysfunction 4. The impact of RT on the
heart is influenced by various factors, including the
radiation dose, treatment techniques, and individual
risk factors of the patient. Studies have shown that
for every 10 Gy increase in radiation dose to the
heart, the risk of coronary artery disease and heart
failure significantly rises ). Deep inspiration
breath-hold (DIBH) techniques significantly decrease
heart radiation exposure, reducing cardiac damage
risk 6 7. Modern radiotherapy technologies,
including intensity-modulated radiotherapy (IMRT)

exposure (8 9, RICHD may manifest years or even
decades after treatment, significantly affecting the
patient's quality of life and survival rate.
Strengthening radiotherapy management, controlling
radiation doses, administering preventive
medications, and controlling hypertension early have
all been proven to help reduce the risk of RICHD (10-
12), Screening for RICHD biomarkers facilitates early
detection of cardiac damage and enhances long-term
quality of life in breast cancer patients (13.14),

There is currently no consensus regarding
biomarkers for RICHD. Integrating the Cancer
Genome Atlas (TCGA) and Gene Expression Omnibus
(GEO) databases for bioinformatic analysis facilitates
the identification of key hub genes essential for
cancer progression and prognosis (15 16). Research
indicates that radiation-induced cardiovascular
damage is frequently associated with endothelial cell
injury and increased local inflammation, with specific
intersecting genes potentially playing crucial roles in
these processes. Moreover, the use of bioinformatics
tools to analyze these datasets can deepen our
understanding of the molecular mechanisms behind
various diseases, revealing potential therapeutic
targets and prognostic biomarkers (17.18), Researchers
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can validate the clinical significance of these
biomarkers by utilizing protein-protein interaction
(PPI) network and survival analyses (19 20). This
pioneering study examines the biological roles of
differentially expressed genes in breast cancer
patients undergoing radiotherapy compared to those
not receiving it, as well as in coronary artery disease.
It also proposes preliminary hypotheses on key genes
and the pathogenesis of RICHD based on existing
literature. This will provide theoretical support for
the future development of novel molecular targeted
interventions.

MATERIALS AND METHODS

Data collection and processing

The mRNA expression profiles, clinical-
pathological features, and prognostic factors of breast
invasive carcinoma samples with radiotherapy
information were obtained from the TCGA database
(https://portal.gdc.cancer.gov/). Data in TPM format
were log2(TPM + 1) normalized after extraction. A
total of 165 breast cancer samples, comprising 73
treated with radiotherapy and 92 untreated, were
included for analysis after ensuring the availability of
both RNA-seq data and clinical information.
Additionally, datasets related to coronary heart
disease were sourced from the GEO database in
MINiIML format. For datasets that had not undergone
normalization, a log2 transformation was uniformly
applied. Non-standardized datasets were
standardized using the normalize. Quantiles function
from the preprocess Core package in R, and batch
effects were removed with the removeBatchEffect
function from the limma package in R software (R
software, version 4.0.3, Auckland, New Zealand).

Differential gene acquisition

We utilized the Limma package (version 3.40.2) in
R software (R software, version 4.0.3, Auckland, New
Zealand ) to analyze differential mRNA expression in
the TCGA and GEO datasets. Adjusted P-values were
evaluated to mitigate false-positive outcomes in
TCGA and GTEx datasets. Differentially expressed
mRNA was identified using a threshold of an adjusted
P-value below 0.05 and a log2(fold change) exceeding
*+1.3.

GO Enrichment and KEGG Pathway Analysis

The DAVID (the Database for Annotation,
Visualization and Integrated Discovery, https://
david.ncifcrf.gov/home.jsp) online tool (https://
david.ncifcrf.gov/home.jsp) was employed for
functional annotation of differentially expressed
genes (DEGs) using Gene Ontology (GO) to clarify
their molecular functions, biological processes, and
cellular ~ components.  Additionally, signaling
pathways were visualized wusing the Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway
analysis.

Hub gene expression and prognostic analysis

The GEPIA (Gene Expression Profiling Interactive
Analysis) website was employed to compare the
expression levels of key hub genes in breast cancer
tissues versus normal tissues, with a significance
threshold of P<0.05. Additionally, the Kaplan-Meier
Plotter online database (https://www.kmplot.com/)
was employed to analyze the prognostic status of hub
genes using receiver operating characteristic (ROC)
curves, with a follow-up period of six months.

Gene expression analysis

We downloaded single-cell data in .h5 format,
containing 45,000 immune cells from eight breast
cancer cases, along with annotation results from
Tumor Immune Single-cell Hub (TISCH) database.
The R packages MAESTRO and Seurat were utilized
for single-cell data processing and analysis, applying
the t-distributed stochastic neighborhood embedding
(t-SNE) method for cellular clustering.

RESULTS

Analysis of differential gene expression in the TCGA
breast cancer dataset

A differential gene expression analysis was
performed on the TCGA breast cancer dataset,
comparing patients who underwent radiotherapy
(n=73) to those who did not (n=92), using a
significance threshold of P<0.05. This analysis
identified 34 upregulated genes (C4orf19, SGCG,
MTIM, DGAT2, SLC19A3, BAIAP2L2, MNX1, INSMI,
AGT, DEPP1, ADAMTS1, IFI44L, SLC5A8, HBA2,
TGFBR3, OSR1, CHI3L2, USP18, OLFMZ2, OBPZB,
DOC2A, CHRDL1, ETV7, LEP, MX1, STC1, ASS1, NTN1,
CST2, SAMDOL, ZNF750, IL6, and SERPINE2) and 16
downregulated genes (SPINK4, CLIC6, CABCOCO1,
FLRT3, CAMK2B, MS4A8, IGFL2, HSPA2, ABHDZ,
OLFML3, SLC1A1, CEMIP, RAB31, MKX, DPYSL4, and
RLN2). Figure 1 displays a volcano plot (1A) and a
heatmap (1B) depicting differential gene expression.

illustrates gene expression changes, where red
dots indicate genes meeting both fold change (FC)
and p-value thresholds, blue dots represent genes
meeting only the p-value threshold, green dots
denote genes meeting only the FC threshold, and grey
dots signify genes that do not meet either threshold,
indicating non-significant or minimal expression
changes. (B) The heatmap displays sample clustering
based on distribution from the outer to inner
groups.)

GO and KEGG pathway analyses were conducted
on the TCGA breast cancer dataset to examine
differential gene expression. In the GO enrichment
analysis, bar colors denote distinct GO term types,
while bar lengths reflect the count of genes enriched
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in each term. The 15 most significant results, each
with p<0.05, were presented. The up-regulated genes
are primarily associated with pathways such as
endocrine pancreas development, signaling receptor
activator activity, sulfur compound binding, extrinsic
components of the membrane, and collagen-
containing extracellular matrix. Conversely, the down
-regulated genes are mainly linked to pathways
including positive regulation of calcium ion and
endocytic vesicle. In the KEGG pathway enrichment
results, different colors indicate the significance of
functional enrichment, with larger values
corresponding to smaller p-values. The size of the
circles represents the number of enriched genes, with
larger circles indicating a greater number of genes.
The upregulated genes are predominantly associated
with the pathway of hypertrophic cardiomyopathy,
while the downregulated genes are primarily linked
to lipid metabolism and atherosclerosis.
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Figure 1. The study examines differential gene expression in
breast cancer patients undergoing radiation therapy
compared to those who do not. (A) The volcano plot illustrates
gene expression changes, where red dots indicate genes
meeting both fold change (FC) and p-value thresholds, blue
dots represent genes meeting only the p-value threshold,
green dots denote genes meeting only the FC threshold, and
grey dots signify genes that do not meet either threshold,
indicating non-significant or minimal expression changes. (B)
The heatmap displays sample clustering based on distribution
from the outer to inner groups).

Differential gene and enrichment analysis of CHD
in GEO

We selected GSE23561 (GPL10775, Coronary heart
disease: n=6, control group: n=9) and GSE120774
(GPL6244, Coronary heart disease: n=17, control
group: n=19) for differential gene queries.Differential
up-regulated genes included 24 and down-regulated
genes included 83 in the coronary heart disease
group (n=23) and normal group (n=28). The
differentially expressed gene profiles are shown in
volcano (figure 2A) and heatmap (figure 2B).
GO-enriched pathways were mainly endocytic vesicle,
orgaric acid binding, blood microparticle and
detection of  chemical stimulus involved,
KEGG-enriched pathways were mainly Viral
myocarditis, Olfactory transduction and Rapl

signaling pathway.
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Figure 2. Differential gene expression in the CHD dataset in

GEO (A. volcano plot; B. heat map).

Expression and prognostic analysis of intersecting
genes

Hemoglobin A2 (HBAZ) was the intersecting gene
between the TCGA dataset and the GEO dataset.
Analysis of HBA2 expression in breast cancer cancers
and normal tissues using the GEPIA website (figure
3A) revealed a statistical difference (*represents
p<0.05) in mRNA gene expression. Kaplan-Meier
Plotter analysis revealed a significant prognostic
difference in breast cancer patients based on HBA2
expression levels (HR=0.87, 95% CI 0.78-0.96,
P=0.005) (figure 3B).
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Figure 3. GEPIA differential expression profile of HBA2 and
Kaplan-Meier Plotter survival analysis (A. GEPIA differential
expression profile, B. HBA2 high and low expression in Kaplan-
Meier Plotter for survival analysis of breast cancer patients).

HBA2 expression in cells from breast cancer
patients

Based on single-cell data from eight breast cancer
samples totaling 45,000 immune cells, we found
significant differences in the expression of the HBA2
gene in different cell types (figure 44, figure 4B). The
high expression of the gene in CD8T cells suggests
that HBA2 may play an important biological function
in this cell type, which informs further studies on the
role of HBA2 in immune-related cells. Meanwhile, the
moderate expression levels in fibroblasts and mast
cells may also suggest a specific role for the gene in
these cell types (figure 4C).
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Figure 4. The expression of HBA2 in breast cancer patient cells
is illustrated through various visualizations. (A. A single-cell
clustering t-SNE plot where distinct cell types are indicated by
different colors; B. A t-SNE plot showing the distribution of
selected gene expressions across different cells, with color
intensity reflecting expression levels-darker shades indicate
lower expression, while brighter shades denote higher
expression; C. A histogram depicting the abundance of
selected genes in various cells).

DISCUSSION

RT is an important modality in the treatment of
breast cancer, although it is gaining attention due to
RICHD. By identifying differentially expressed genes
associated with RICHD, we can better understand the
mechanisms through which radiation therapy affects
cardiac health in breast cancer patients, potentially
providing biomarkers and therapeutic targets for
clinical applications. Numerous studies employing
bioinformatics have analyzed breast cancer gene
expression profiles, identifying crucial genes
associated with disease progression and prognosis
(22). Additionally, in addressing radiation-induced
cardiac injury, researchers are actively exploring
different biomarkers in hopes of improving patient
outcomes (23). Integrating data from the TCGA and
GEO databases enables researchers to more
comprehensively identify RICHD-associated genes,
thus providing a theoretical basis for future clinical
research and therapeutic strategies (24).

Our results indicate that, compared to breast
cancer patients who did not undergo radiation
therapy, those who did showed 34 upregulated genes
and 16 downregulated genes. This finding highlights
the influence of radiation therapy on the molecular
profile of breast cancer, indicating that it may trigger
specific gene expression alterations that enhance our
understanding of treatment response and resistance
mechanisms in patients 25). GO pathway enrichment
analysis suggests these genes may play pivotal roles
in endocrine system development, signal
transduction, cell membrane structure and function,
and the maintenance and remodeling of the
extracellular matrix (ECM) (26-29), Dynamic changes in
the ECM are closely associated with tissue repair and
regeneration in various organs, including the heart,
liver, and nervous system (7. 30), KEGG pathway
enrichment analysis of the differentially expressed
genes indicated links to hypertrophic
cardiomyopathy (HCM) and lipid metabolism, where

disruptions in lipid homeostasis may worsen
atherosclerosis and result in significant
cardiovascular events (31,

Our findings identified HBA2 as a key gene for
RICHD. In breast cancer patients, coronary artery
disease risk factors such as hypertension, diabetes,
and hypercholesterolemia may be affected by HBA2
gene variants 32). Other studies have shown that
HBA2 expression levels are associated with cardiac
function changes, possibly affecting heart health
indirectly by influencing oxygen transport in the
blood (33). Thus, studying HBAZ not only aids in
understanding RICHD risk in breast cancer patients
but may also provide a foundation for developing new
therapeutic strategies. Our GEPIA analysis indicated a
statistically significant difference in HBAZ mRNA
expression between cancerous and normal breast
tissues. This finding aligns with other studies,
suggesting that HBAZ may play a vital role in breast
cancer initiation and progression (34. Our
Kaplan-Meier Plotter analysis revealed a significant
prognostic difference in breast cancer patients based
on HBAZ expression levels, aligning with findings
from other studies. Research by Sun et al. showed
that high HBAZ expression is associated with
extended survival in breast cancer patients, whereas
low expression correlates with a poorer prognosis (35).
Moreover, HBA2 expression may relate to tumor
stage, grade, and other clinicopathological
characteristics, further emphasizing its potential as a
biomarker (6. Therefore, HBAZ expression could
serve as a predictive factor for breast cancer
prognosis and offer new insights for individualized
treatment 37). Some studies have also identified other
key targets, e.g., Cui et al. Ring finger protein 146 has
been linked to the prognosis of breast cancer patients,
necessitating further validation of these targets 38).

Single-cell data analysis showed high HBAZ
expression in CD8+ T cells of breast cancer patients,
suggesting a strong connection to immune responses
within the tumor microenvironment. CD8+ T cells are
key effectors of antitumor immunity, and their
enhanced function is closely linked to tumor
prognosis. Studies have indicated that CD8+ T cell
activity is associated with tumor cell characteristics,
cytokines in the microenvironment, and the
expression levels of tumor-associated antigens (39). In
breast cancer, CD8+ T cell infiltration generally
correlates  positively with  patient  survival,
particularly in HER2-positive and triple-negative
breast cancer cases (49). High HBAZ expression may
reflect adaptive changes in CD8+ T cells within the
tumor microenvironment, potentially linked to tumor
cell metabolic states and immune evasion
mechanisms. Research has shown that tumor cells
can suppress CD8+ T cell function by altering
metabolic pathways, thereby promoting tumor
growth and metastasis (41). Additionally, HBA2
expression might correlate with immunosuppressive
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factors, such as PD-L1 expression, which help tumor
cells evade immune surveillance by inhibiting CD8+ T
cell activity (42). Therefore, HBAZ2's high expression in
CD8+ T cells may not only indicate changes in the
tumor micro environment but also serve as a
potential target for breast cancer immunotherapy.
Future studies should investigate HBAZ2's specific role
in CD8+ T cell function and its potential applications
in breast cancer immunotherapy (“3).

This study has certain limitations. First,
heterogeneity and potential bias in the database data
sources could impact the reliability and general
applicability of our findings, especially with smaller
sample sizes. Additionally, limited clinical
information in many data sources restricts deeper
analysis of the relationship between gene expression,
disease severity, and patient prognosis. Data
insufficiency, version inconsistencies, and update
frequency within databases may further reduce
result reproducibility. While tools like GEPIA offer
convenience, their algorithmic and parameter
limitations may impact accuracy. Finally, since the
identified genes in database analyses indicate
associations rather than causal relationships, further
biological experiments are necessary to verify the
actual role of these key genes in disease.

CONCLUSION

The elevated expression of HBAZ in CD8+ T cells
indicates its potential significance in immune
responses and RICHD development, offering a novel
avenue for precision treatment of RICHD. Future
research could further explore the specific
mechanisms of HBAZ in the pathogenesis of RICHD
and validate its clinical application potential as a
therapeutic  target, offering more effective
personalized treatment options for RICHD patients.
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